Ca2+ transporters and their role in the cancer hallmarks

Calcium ion (Ca2+) activates crucial signaling pathways involved in different cellular processes, such as proliferation, cell cycle progression, apoptosis and gene expression. Ca2+ signaling depends on various proteins, including channels, pumps, receptors, and binding or storage proteins, which reg...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awduron: Monge-Hernández, Indra Nicole, Santiago-García, Juan
Fformat: Online
Iaith:spa
Cyhoeddwyd: Universidad Autónoma de Tamaulipas 2024
Mynediad Ar-lein:https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1917
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Disgrifiad
Crynodeb:Calcium ion (Ca2+) activates crucial signaling pathways involved in different cellular processes, such as proliferation, cell cycle progression, apoptosis and gene expression. Ca2+ signaling depends on various proteins, including channels, pumps, receptors, and binding or storage proteins, which regulate Ca2+ influx, compartmentalization, and concentration for Ca2+ dependent signaling pathways to function properly. This work aimed to analyze evidence regarding the altered expression of Ca2+ transporters in cancer and their contribution to the hallmarks of the disease, mainly sustained cellular proliferation, apoptosis resistance, and activation of migration and invasion. Evidence suggests that overexpression of Ca2+ channels in cancer is associated with increased Ca2+ entry and activation of CaM/CaN/NFAT, Akt or MAPK/ERK signaling pathways, leading to cell proliferation, migration, invasion, and epithelial-mesenchymal transition. On the other hand, the downregulation of Ca2+ pumps or upregulation of mitochondrial channels contributes to apoptosis evasion and enhanced cellular migration. Research on Ca2+ transporters with deregulated expression in cancer may contribute to the identification of potential biomarkers and therapeutic targets for the development of new treatments.