Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities
This paper uses Monte Carlo simulation, a stochastic method, to calculate the levelized costs of three electric power generation technologies: coal thermoelectric, combined cycle, and nuclear power plants. We found that hat the expected Generated Levelized Total Cost (cost of MegaWatt generated by h...
Saved in:
Main Author: | |
---|---|
Format: | Online |
Language: | spa |
Published: |
ACACIA A.C.
2020
|
Online Access: | https://cienciasadmvastyp.uat.edu.mx/index.php/ACACIA/article/view/229 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs2.cienciasadmvastyp.uat.edu.mx:article-229 |
---|---|
record_format |
ojs |
spelling |
oai:ojs2.cienciasadmvastyp.uat.edu.mx:article-2292020-02-09T20:54:50Z Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities Modelos estocásticos aplicados a la simulación de costos nivelados de centrales generadoras de electricidad de carga base considerando externalidades ambientales Gómez Rios, María del Carmen This paper uses Monte Carlo simulation, a stochastic method, to calculate the levelized costs of three electric power generation technologies: coal thermoelectric, combined cycle, and nuclear power plants. We found that hat the expected Generated Levelized Total Cost (cost of MegaWatt generated by hour), accounting for environmental externalities (CO2 emissions), is higher in coal thermoelectric plants ($80.40 dollars/MWh), followed by the combined cycle ($66.54 dollars/MWh) while nuclear power plants have the lowest cost ($ 62.0 dollars/MWh). The probability that the Total Levelized Cost of Generation with Externalities (CTNGE in Spanish) is in the range of $ 60 to $ 80 dollars/MWh is 44.2% for the coal-fired power plant, 99.1% for the combined cycle, and 60.6% for the nuclear power plant. Current results suggest that, as stochastic models incorporate historical and future information of the main input variables, constitute a tool that provides greater robustness than deterministic models. En este trabajo se aplica el método estocástico a través de la simulación Monte Carlo a los costos nivelados de tres tecnologías de generación de energía eléctrica: termoeléctricas de carbón, ciclo combinado y centrales nucleares. Se encuentra evidencia, mediante la simulación Monte Carlo de que el Costo Total Nivelado de Generación esperado, por MegaWatt hora generado (MWh), considerando externalidades ambientales (emisiones de CO2), es mayor en las termoeléctricas de carbón ($80.40 dólares/MWh), seguido del ciclo combinado ($66.54 dólares/MWh) y las centrales nucleares presentan el menor costo ($62.0 dólares/MWh). La probabilidad de que el Costo Total Nivelado de Generación con Externalidades (CTNGE) se encuentre en el intervalo de $60 a $80 dólares/MWh es de 44.2% en la termoeléctrica de carbón, 99.1% en el ciclo combinado y 60.6% en la central nuclear. Los resultados encontrados señalan a los modelos estocásticos como una herramienta que proporciona mayor robustez, en relación a los modelos determinísticos, debido a que se incorpora información histórica y futura de las principales variables de entrada. ACACIA A.C. 2020-02-02 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo revisado por pares application/pdf text/html https://cienciasadmvastyp.uat.edu.mx/index.php/ACACIA/article/view/229 Ciencias Administrativas. Teoría y Praxis; Vol 15 No 2 (2019): JULY - DECEMBER; 11 - 27 Ciencias Administrativas. Teoría y Praxis; Vol. 15 Núm. 2 (2019): JULIO - DICIEMBRE; 11 - 27 2683-1465 2683-1457 spa https://cienciasadmvastyp.uat.edu.mx/index.php/ACACIA/article/view/229/254 https://cienciasadmvastyp.uat.edu.mx/index.php/ACACIA/article/view/229/255 Derechos de autor 2019 Ciencias Administrativas. Teoría y Praxis |
institution |
CIENCIAS ADMINISTRATIVAS |
collection |
OJS |
language |
spa |
format |
Online |
author |
Gómez Rios, María del Carmen |
spellingShingle |
Gómez Rios, María del Carmen Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
author_facet |
Gómez Rios, María del Carmen |
author_sort |
Gómez Rios, María del Carmen |
title |
Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
title_short |
Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
title_full |
Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
title_fullStr |
Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
title_full_unstemmed |
Stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
title_sort |
stochastic models applied to the simulation of levelized costs of baseload power generation plants accounting for environmental externalities |
description |
This paper uses Monte Carlo simulation, a stochastic method, to calculate the levelized costs of three electric power generation technologies: coal thermoelectric, combined cycle, and nuclear power plants. We found that hat the expected Generated Levelized Total Cost (cost of MegaWatt generated by hour), accounting for environmental externalities (CO2 emissions), is higher in coal thermoelectric plants ($80.40 dollars/MWh), followed by the combined cycle ($66.54 dollars/MWh) while nuclear power plants have the lowest cost ($ 62.0 dollars/MWh). The probability that the Total Levelized Cost of Generation with Externalities (CTNGE in Spanish) is in the range of $ 60 to $ 80 dollars/MWh is 44.2% for the coal-fired power plant, 99.1% for the combined cycle, and 60.6% for the nuclear power plant. Current results suggest that, as stochastic models incorporate historical and future information of the main input variables, constitute a tool that provides greater robustness than deterministic models. |
publisher |
ACACIA A.C. |
publishDate |
2020 |
url |
https://cienciasadmvastyp.uat.edu.mx/index.php/ACACIA/article/view/229 |
work_keys_str_mv |
AT gomezriosmariadelcarmen stochasticmodelsappliedtothesimulationoflevelizedcostsofbaseloadpowergenerationplantsaccountingforenvironmentalexternalities AT gomezriosmariadelcarmen modelosestocasticosaplicadosalasimulaciondecostosniveladosdecentralesgeneradorasdeelectricidaddecargabaseconsiderandoexternalidadesambientales |
_version_ |
1712116179126976512 |