Robust stabilization of interval plants with time delay
In this work it is presented a new method to tune PID controllers for processes that have uncertainty in its parameters. This uncertainty is represented by interval plants, which mathematically describes the process to be controlled. The tuning methodology is based on the use of well-known rules of...
Saved in:
Main Authors: | , |
---|---|
Format: | Online |
Language: | eng |
Published: |
Universidad Autónoma de Tamaulipas
2009
|
Online Access: | https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.pkp.sfu.ca:article-379 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.pkp.sfu.ca:article-3792017-11-21T15:17:20Z Robust stabilization of interval plants with time delay Estabilización robusta de plantas intervalo con retardo de tiempo Romero-Galván , Gerardo Reyes-Núñez, María del Carmen In this work it is presented a new method to tune PID controllers for processes that have uncertainty in its parameters. This uncertainty is represented by interval plants, which mathematically describes the process to be controlled. The tuning methodology is based on the use of well-known rules of Ziegler and Nichols, which are generalized to systems that have parametric uncertainty, which is the main contribution of the research. Furthermore, it is a tzime delay in the system output, which may be due to an inherent delay in the mathematical model or time delay caused by delay in the computation time for devices, sensors or actuators. The methodology is based on the construction of the “Value Set” for the characteristic equation of the close loop control system, which, aided by the Zero Exclusion Principles, it provides a simple graphical tool by which you can obtain the parameters (ultimate gain) and (ultimate period), and with this parameters it is possible to tune the PID controller for the system with uncertainty and time delay. This prevents that the system loses stability due to the parametric uncertainty. En este trabajo de investigación se presenta una nueva metodología para sintonizar controladores PID (proporcional, integral y derivativo) aplicado a procesos que presentan incertidumbre en sus parámetros. Esta incertidumbre es representada por plantas intervalo, las cuales describen matemáticamente el proceso que se desea controlar. La metodología de sintonización está basada en el uso de las reglas bien conocidas de Ziegler y Nichols, que son generalizadas para sistemas que presentan incertidumbre paramétrica, siendo ésta la aportación principal del trabajo de investigación. Además, se considera un retardo de tiempo en la salida del sistema, el cual puede representar retardo inherente en el modelo matemático o retardo de tiempo provocado por retraso en el tiempo de cómputo de dispositivos, sensores o actuadores. La metodología empleada se basa en la construcción del Value Set (gráfica en el plano complejo que representa el comportamiento dinámico en el dominio de la frecuencia de un sistema físico) para la ecuación característica del sistema, el cual, ayudado por el Principio de Exclusión de Cero, proporciona una herramienta gráfica muy sencilla, mediante ella se pueden obtener los parámetros (Ganancia última) y (Período último) con los que es posible sintonizar el controlador PID para el sistema con incertidumbre y retardo de tiempo. Lo anterior evita que la incertidumbre paramétrica presente en los procesos provoque inestabilidad en el sistema sintonizado. Universidad Autónoma de Tamaulipas 2009-06-30 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379 CienciaUAT; Vol. 3 No. 4: April-June 2009; 71-74 CienciaUAT; Vol. 3 No. 4: Abril-Junio 2009; 71-74 2007-7858 2007-7521 eng https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379/189 |
institution |
CIENCIA UAT |
collection |
OJS |
language |
eng |
format |
Online |
author |
Romero-Galván , Gerardo Reyes-Núñez, María del Carmen |
spellingShingle |
Romero-Galván , Gerardo Reyes-Núñez, María del Carmen Robust stabilization of interval plants with time delay |
author_facet |
Romero-Galván , Gerardo Reyes-Núñez, María del Carmen |
author_sort |
Romero-Galván , Gerardo |
title |
Robust stabilization of interval plants with time delay |
title_short |
Robust stabilization of interval plants with time delay |
title_full |
Robust stabilization of interval plants with time delay |
title_fullStr |
Robust stabilization of interval plants with time delay |
title_full_unstemmed |
Robust stabilization of interval plants with time delay |
title_sort |
robust stabilization of interval plants with time delay |
description |
In this work it is presented a new method to tune PID controllers for processes that have uncertainty in its parameters. This uncertainty is represented by interval plants, which mathematically describes the process to be controlled. The tuning methodology is based on the use of well-known rules of Ziegler and Nichols, which are generalized to systems that have parametric uncertainty, which is the main contribution of the research. Furthermore, it is a tzime delay in the system output, which may be due to an inherent delay in the mathematical model or time delay caused by delay in the computation time for devices, sensors or actuators. The methodology is based on the construction of the “Value Set” for the characteristic equation of the close loop control system, which, aided by the Zero Exclusion Principles, it provides a simple graphical tool by which you can obtain the parameters (ultimate gain) and (ultimate period), and with this parameters it is possible to tune the PID controller for the system with uncertainty and time delay. This prevents that the system loses stability due to the parametric uncertainty. |
publisher |
Universidad Autónoma de Tamaulipas |
publishDate |
2009 |
url |
https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379 |
work_keys_str_mv |
AT romerogalvangerardo robuststabilizationofintervalplantswithtimedelay AT reyesnunezmariadelcarmen robuststabilizationofintervalplantswithtimedelay AT romerogalvangerardo estabilizacionrobustadeplantasintervaloconretardodetiempo AT reyesnunezmariadelcarmen estabilizacionrobustadeplantasintervaloconretardodetiempo |
_version_ |
1712116110209318912 |