Robust stabilization of interval plants with time delay

In this work it is presented a new method to tune PID controllers for processes that have uncertainty in its parameters. This uncertainty is represented by interval plants, which mathematically describes the process to be controlled. The tuning methodology is based on the use of well-known rules of...

Full description

Saved in:
Bibliographic Details
Main Authors: Romero-Galván , Gerardo, Reyes-Núñez, María del Carmen
Format: Online
Language:eng
Published: Universidad Autónoma de Tamaulipas 2009
Online Access:https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ojs.pkp.sfu.ca:article-379
record_format ojs
spelling oai:ojs.pkp.sfu.ca:article-3792017-11-21T15:17:20Z Robust stabilization of interval plants with time delay Estabilización robusta de plantas intervalo con retardo de tiempo Romero-Galván , Gerardo Reyes-Núñez, María del Carmen In this work it is presented a new method to tune PID controllers for processes that have uncertainty in its parameters. This uncertainty is represented by interval plants, which mathematically describes the process to be controlled. The tuning methodology is based on the use of well-known rules of Ziegler and Nichols, which are generalized to systems that have parametric uncertainty, which is the main contribution of the research. Furthermore, it is a tzime delay in the system output, which may be due to an inherent delay in the mathematical model or time delay caused by delay in the computation time for devices, sensors or actuators. The methodology is based on the construction of the “Value Set” for the characteristic equation of the close loop control system, which, aided by the Zero Exclusion Principles, it provides a simple graphical tool by which you can obtain the parameters (ultimate gain) and (ultimate period), and with this parameters it is possible to tune the PID controller for the system with uncertainty and time delay. This prevents that the system loses stability due to the parametric uncertainty. En este trabajo de investigación se presenta una nueva metodología para sintonizar controladores PID (proporcional, integral y derivativo) aplicado a procesos que presentan incertidumbre en sus parámetros. Esta incertidumbre es representada por plantas intervalo, las cuales describen matemáticamente el proceso que se desea controlar. La metodología de sintonización está basada en el uso de las reglas bien conocidas de Ziegler y Nichols, que son generalizadas para sistemas que presentan incertidumbre paramétrica, siendo ésta la aportación principal del trabajo de investigación. Además, se considera un retardo de tiempo en la salida del sistema, el cual puede representar retardo inherente en el modelo matemático o retardo de tiempo provocado por retraso en el tiempo de cómputo de dispositivos, sensores o actuadores. La metodología empleada se basa en la construcción del Value Set (gráfica en el plano complejo que representa el comportamiento dinámico en el dominio de la frecuencia de un sistema físico) para la ecuación característica del sistema, el cual, ayudado por el Principio de Exclusión de Cero, proporciona una herramienta gráfica muy sencilla, mediante ella se pueden obtener los parámetros (Ganancia última) y (Período último) con los que es posible sintonizar el controlador PID para el sistema con incertidumbre y retardo de tiempo. Lo anterior evita que la incertidumbre paramétrica presente en los procesos provoque inestabilidad en el sistema sintonizado. Universidad Autónoma de Tamaulipas 2009-06-30 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379 CienciaUAT; Vol. 3 No. 4: April-June 2009; 71-74 CienciaUAT; Vol. 3 No. 4: Abril-Junio 2009; 71-74 2007-7858 2007-7521 eng https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379/189
institution CIENCIA UAT
collection OJS
language eng
format Online
author Romero-Galván , Gerardo
Reyes-Núñez, María del Carmen
spellingShingle Romero-Galván , Gerardo
Reyes-Núñez, María del Carmen
Robust stabilization of interval plants with time delay
author_facet Romero-Galván , Gerardo
Reyes-Núñez, María del Carmen
author_sort Romero-Galván , Gerardo
title Robust stabilization of interval plants with time delay
title_short Robust stabilization of interval plants with time delay
title_full Robust stabilization of interval plants with time delay
title_fullStr Robust stabilization of interval plants with time delay
title_full_unstemmed Robust stabilization of interval plants with time delay
title_sort robust stabilization of interval plants with time delay
description In this work it is presented a new method to tune PID controllers for processes that have uncertainty in its parameters. This uncertainty is represented by interval plants, which mathematically describes the process to be controlled. The tuning methodology is based on the use of well-known rules of Ziegler and Nichols, which are generalized to systems that have parametric uncertainty, which is the main contribution of the research. Furthermore, it is a tzime delay in the system output, which may be due to an inherent delay in the mathematical model or time delay caused by delay in the computation time for devices, sensors or actuators. The methodology is based on the construction of the “Value Set” for the characteristic equation of the close loop control system, which, aided by the Zero Exclusion Principles, it provides a simple graphical tool by which you can obtain the parameters (ultimate gain) and (ultimate period), and with this parameters it is possible to tune the PID controller for the system with uncertainty and time delay. This prevents that the system loses stability due to the parametric uncertainty.
publisher Universidad Autónoma de Tamaulipas
publishDate 2009
url https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/379
work_keys_str_mv AT romerogalvangerardo robuststabilizationofintervalplantswithtimedelay
AT reyesnunezmariadelcarmen robuststabilizationofintervalplantswithtimedelay
AT romerogalvangerardo estabilizacionrobustadeplantasintervaloconretardodetiempo
AT reyesnunezmariadelcarmen estabilizacionrobustadeplantasintervaloconretardodetiempo
_version_ 1712116110209318912