Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic
Mexico ranks first in childhood obesity in the world, so it is important to identify variables associated with food consumption. The objective of this work was to establish whether the way in which food consumption is modified depending on social food norms and food advertising received by school ch...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Online |
Language: | spa |
Published: |
Universidad Autónoma de Tamaulipas
2024
|
Online Access: | https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1782 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.pkp.sfu.ca:article-1782 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.pkp.sfu.ca:article-17822024-03-22T16:31:19Z Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic Normas sociales, publicidad y consumo alimentario en escolares: modelado mediante lógica difusa tipo 2 Pérez-Pedraza, Bárbara de los Ángeles Olvera-Romero, Gerardo Daniel Valdés-García, Karla Patricia Praga-Alejo, Rolando Javier consumo alimenticio inteligencia artificial lógica difusa normas sociales publicidad food consumption artificial intelligence fuzzy logic social norms advertising Mexico ranks first in childhood obesity in the world, so it is important to identify variables associated with food consumption. The objective of this work was to establish whether the way in which food consumption is modified depending on social food norms and food advertising received by school children. A predictive multivariate study was designed using interval type two fuzzy logic systems (IT2 FLS), and comparing its fit with conventional models, such as multiple linear regression (RLM). We worked with the responses issued by 196 children in a previous study and stored in a database, selecting only those that corresponded to the variables of interest for the study. The social norms to avoid, the number of meals and the purchase of food through food advertising made it possible to predict children’s food consumption through IT2 FLS. In RLM, mealtimes had a greater predictive capacity than the number of meals. The IT2 FLS provided a higher coefficient of determination (R2 = 0.649) than that of the RLM (R2 = 0.370). Food consumption, being a multicausal and complex phenomenon, can be better predicted by using analysis methods that manage uncertainty more flexibly, as the IT2 FLS does. México ocupa el primer lugar en obesidad infantil en el mundo, por lo que resulta importante identificar variables asociadas al consumo alimentario. El objetivo del presente trabajo fue establecer si la forma en que el consumo de alimentos se modifica en función de las normas sociales alimentarias y la publicidad alimentaria que recibe la población infantil escolar. Se diseñó un estudio multivariado predictivo utilizando sistemas de lógica difusa tipo dos de intervalo (IT2 FLS), y comparando su ajuste con modelos convencionales, como la regresión lineal múltiple (RLM). Se trabajó con las respuestas emitidas por 196 niños en un estudio previo y almacenadas en una base de datos, seleccionando solo las que correspondieron a las variables de interés para el estudio. Las normas sociales a evitar, el número de comidas y la compra de alimentos por la publicidad alimentaria permitieron predecir el consumo alimentario de los niños mediante IT2 FLS. En RLM las horas de comidas tuvo mayor capacidad predictiva que el número de comidas. El IT2 FLS proporcionó un mayor coeficiente de determinación (R2 = 0.649), que el de la RLM (R2 = 0.370). El consumo alimentario, al ser un fenómeno multicausal y complejo, puede ser mejor predicho al utilizar métodos de análisis que manejen de forma más flexible la incertidumbre, como lo hace la IT2 FLS. Universidad Autónoma de Tamaulipas 2024-01-31 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/html text/xml https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1782 10.29059/cienciauat.v18i2.1782 CienciaUAT; Vol 18 No. 2. January-June 2024; 75-90 CienciaUAT; Vol. 18 No. 2: Enero-Junio 2024; 75-90 2007-7858 2007-7521 spa https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1782/1183 https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1782/1171 https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1782/1211 Derechos de autor 2023 Universidad Autónoma de Tamaulipas https://creativecommons.org/licenses/by-nc-sa/4.0 |
institution |
CIENCIA UAT |
collection |
OJS |
language |
spa |
format |
Online |
author |
Pérez-Pedraza, Bárbara de los Ángeles Olvera-Romero, Gerardo Daniel Valdés-García, Karla Patricia Praga-Alejo, Rolando Javier |
spellingShingle |
Pérez-Pedraza, Bárbara de los Ángeles Olvera-Romero, Gerardo Daniel Valdés-García, Karla Patricia Praga-Alejo, Rolando Javier Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
author_facet |
Pérez-Pedraza, Bárbara de los Ángeles Olvera-Romero, Gerardo Daniel Valdés-García, Karla Patricia Praga-Alejo, Rolando Javier |
author_sort |
Pérez-Pedraza, Bárbara de los Ángeles |
title |
Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
title_short |
Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
title_full |
Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
title_fullStr |
Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
title_full_unstemmed |
Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
title_sort |
social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic |
description |
Mexico ranks first in childhood obesity in the world, so it is important to identify variables associated with food consumption. The objective of this work was to establish whether the way in which food consumption is modified depending on social food norms and food advertising received by school children. A predictive multivariate study was designed using interval type two fuzzy logic systems (IT2 FLS), and comparing its fit with conventional models, such as multiple linear regression (RLM). We worked with the responses issued by 196 children in a previous study and stored in a database, selecting only those that corresponded to the variables of interest for the study. The social norms to avoid, the number of meals and the purchase of food through food advertising made it possible to predict children’s food consumption through IT2 FLS. In RLM, mealtimes had a greater predictive capacity than the number of meals. The IT2 FLS provided a higher coefficient of determination (R2 = 0.649) than that of the RLM (R2 = 0.370). Food consumption, being a multicausal and complex phenomenon, can be better predicted by using analysis methods that manage uncertainty more flexibly, as the IT2 FLS does. |
publisher |
Universidad Autónoma de Tamaulipas |
publishDate |
2024 |
url |
https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1782 |
work_keys_str_mv |
AT perezpedrazabarbaradelosangeles socialnormsadvertisingandfoodconsumptioninschoolchildrenmodelingusingfuzzylogic AT olveraromerogerardodaniel socialnormsadvertisingandfoodconsumptioninschoolchildrenmodelingusingfuzzylogic AT valdesgarciakarlapatricia socialnormsadvertisingandfoodconsumptioninschoolchildrenmodelingusingfuzzylogic AT pragaalejorolandojavier socialnormsadvertisingandfoodconsumptioninschoolchildrenmodelingusingfuzzylogic AT perezpedrazabarbaradelosangeles normassocialespublicidadyconsumoalimentarioenescolaresmodeladomediantelogicadifusatipo2 AT olveraromerogerardodaniel normassocialespublicidadyconsumoalimentarioenescolaresmodeladomediantelogicadifusatipo2 AT valdesgarciakarlapatricia normassocialespublicidadyconsumoalimentarioenescolaresmodeladomediantelogicadifusatipo2 AT pragaalejorolandojavier normassocialespublicidadyconsumoalimentarioenescolaresmodeladomediantelogicadifusatipo2 |
_version_ |
1817480077272678400 |