Kinetics of the fluoride and arsenic adsorption using alumina nanofibers

In many countries of the world including Mexico, the presence of toxic elements such as arsenic and fluoride on the maximum levels permitted in drinking water (0.01 mg/L and 1.5 mg/L) is causing health problems such as cancer and skeletal fluorosis, respectively. For this reason, the objective of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Zamorategui-Molina, Adrían, Gutiérrez-Ortega, Norma Leticia, Del-Ángel-Soto, Julio
Format: Online
Language:spa
Published: Universidad Autónoma de Tamaulipas 2019
Online Access:https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1140
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ojs.pkp.sfu.ca:article-1140
record_format ojs
institution CIENCIA UAT
collection OJS
language spa
format Online
author Zamorategui-Molina, Adrían
Gutiérrez-Ortega, Norma Leticia
Del-Ángel-Soto, Julio
spellingShingle Zamorategui-Molina, Adrían
Gutiérrez-Ortega, Norma Leticia
Del-Ángel-Soto, Julio
Kinetics of the fluoride and arsenic adsorption using alumina nanofibers
author_facet Zamorategui-Molina, Adrían
Gutiérrez-Ortega, Norma Leticia
Del-Ángel-Soto, Julio
author_sort Zamorategui-Molina, Adrían
title Kinetics of the fluoride and arsenic adsorption using alumina nanofibers
title_short Kinetics of the fluoride and arsenic adsorption using alumina nanofibers
title_full Kinetics of the fluoride and arsenic adsorption using alumina nanofibers
title_fullStr Kinetics of the fluoride and arsenic adsorption using alumina nanofibers
title_full_unstemmed Kinetics of the fluoride and arsenic adsorption using alumina nanofibers
title_sort kinetics of the fluoride and arsenic adsorption using alumina nanofibers
description In many countries of the world including Mexico, the presence of toxic elements such as arsenic and fluoride on the maximum levels permitted in drinking water (0.01 mg/L and 1.5 mg/L) is causing health problems such as cancer and skeletal fluorosis, respectively. For this reason, the objective of this work was to determine the kinetics of adsorption process of the fluoride and arsenic in synthetic water using gamma alumina (γ-Al2O3) and to determine whether the process develops spontaneously. Nanofiber γ-Al2O3 with high surface area was synthesized by homogeneous precipitation and spray dry method. This adsorbent nanomaterial was used to remove fluoride and total arsenic from synthetic water. Nanofiber morphology of the mesoporous γ-Al2O3 was analyzed by transmission and scanning electron microscopy. The high surface area (352 m2/g) was determined by nitrogen adsorption-desorption. The adsorption isotherms of the removal process concur by the Langmuir model for both toxic elements. γ-Al2O3 removes up to 96 % of fluoride ions and 92 % of total arsenic at pH5, while a removal of 90 % and 94.2 % at pH7 of fluoride and arsenic, respectively, is achieved. The removal kinetics follows the pseudo-second order model, and the dimensionless equilibrium parameter and Gibbs standard free energy confirm that the process is performed spontaneously. The gamma nano-fibrillar alumina is a good material for the natural and spontaneous removal of arsenic and fluoride present in synthetic water used in this study.
publisher Universidad Autónoma de Tamaulipas
publishDate 2019
url https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1140
work_keys_str_mv AT zamorateguimolinaadrian kineticsofthefluorideandarsenicadsorptionusingaluminananofibers
AT gutierrezorteganormaleticia kineticsofthefluorideandarsenicadsorptionusingaluminananofibers
AT delangelsotojulio kineticsofthefluorideandarsenicadsorptionusingaluminananofibers
AT zamorateguimolinaadrian cineticadelaadsorciondefluoruroyarsenicousandonanofibrasdealumina
AT gutierrezorteganormaleticia cineticadelaadsorciondefluoruroyarsenicousandonanofibrasdealumina
AT delangelsotojulio cineticadelaadsorciondefluoruroyarsenicousandonanofibrasdealumina
_version_ 1712116133344051200
spelling oai:ojs.pkp.sfu.ca:article-11402020-01-29T12:01:55Z Kinetics of the fluoride and arsenic adsorption using alumina nanofibers Cinética de la adsorción de fluoruro y arsénico usando nano-fibras de alúmina Zamorategui-Molina, Adrían Gutiérrez-Ortega, Norma Leticia Del-Ángel-Soto, Julio nanofibers Langmuir kinetics free energy nano-fibras Langmuir cinética energía libre In many countries of the world including Mexico, the presence of toxic elements such as arsenic and fluoride on the maximum levels permitted in drinking water (0.01 mg/L and 1.5 mg/L) is causing health problems such as cancer and skeletal fluorosis, respectively. For this reason, the objective of this work was to determine the kinetics of adsorption process of the fluoride and arsenic in synthetic water using gamma alumina (γ-Al2O3) and to determine whether the process develops spontaneously. Nanofiber γ-Al2O3 with high surface area was synthesized by homogeneous precipitation and spray dry method. This adsorbent nanomaterial was used to remove fluoride and total arsenic from synthetic water. Nanofiber morphology of the mesoporous γ-Al2O3 was analyzed by transmission and scanning electron microscopy. The high surface area (352 m2/g) was determined by nitrogen adsorption-desorption. The adsorption isotherms of the removal process concur by the Langmuir model for both toxic elements. γ-Al2O3 removes up to 96 % of fluoride ions and 92 % of total arsenic at pH5, while a removal of 90 % and 94.2 % at pH7 of fluoride and arsenic, respectively, is achieved. The removal kinetics follows the pseudo-second order model, and the dimensionless equilibrium parameter and Gibbs standard free energy confirm that the process is performed spontaneously. The gamma nano-fibrillar alumina is a good material for the natural and spontaneous removal of arsenic and fluoride present in synthetic water used in this study. En muchos países del mundo, incluido México, la presencia de elementos tóxicos, como el arsénico y flúor por encima de los niveles máximos permitidos en el agua potable (0.01 mg/L y 1.5 mg/L), respectivamente está generando problemas a la salud, como el cáncer y la fluorosis esquelética, respectivamente. El objetivo de este trabajo fue determinar la cinética del proceso de adsorción del fluoruro y arsénico en soluciones sintéticas, utilizando gamma alúmina (γ-Al2O3) para establecer si el proceso se desarrolla espontáneamente. Se sintetizó γ-Al2O3 nano-fibrilar, con alta área superficial (352 m2/g), por precipitación homogénea, y se secó por espray. El nanomaterial adsorbente obtenido se usó para eliminar el fluoruro y el arsénico total de soluciones sintéticas. La morfología de la nano-fibra de γ-Al2O3 mesoporosa se analizó usando microscopía electrónica de transmisión y de barrido. El área superficial se determinó por adsorción-desorción a pH 7 de nitrógeno. Las isotermas de adsorción del proceso de remoción coincidieron con el modelo de Langmuir para ambos elementos. La γ-Al2O3 eliminó hasta 96 % de iones flúor y 92 % de arsénico total a pH 5, mientras que a pH 7 se alcanzó una remoción del 90 % y 94.2 % de fluoruro y arsénico, respectivamente. La cinética de remoción siguió el modelo de seudo-segundo orden, y el parámetro de equilibrio adimensional y la energía libre estándar de Gibbs confirmaron que el proceso se desarrolló espontáneamente. La gamma alúmina nano-fibrilar permitió la remoción natural y espontánea de arsénico y fluoruro presente en las soluciones utilizadas en este estudio. Universidad Autónoma de Tamaulipas 2019-07-29 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/html application/xml https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1140 10.29059/cienciauat.v14i1.1140 CienciaUAT; Vol 14 No. 1. July-December 2019; 45-60 CienciaUAT; Vol. 14 No. 1: Julio-Diciembre 2019; 45-60 2007-7858 2007-7521 spa https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1140/596 https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1140/604 https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1140/697 Derechos de autor 2019 CienciaUAT